Cha S-H, Hong J, McGufe M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent

biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano

9:90979105

Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper

nanoparticles. Nanotechnology 25:135101

Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of

bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:23272333

Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of

silver nanoparticles. Front Microbiol 7:1831

Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of

hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd

(II) using Escherichia coli mutant strains. Microbiology 156:26302640

Dhanabalan K, Gurunathan K (2015) Microemulsion mediated synthesis and characterization of

CdS nanoparticles and its anti-biolm efcacy against Escherichia coli ATCC 25922. J Nanosci

Nanotechnol 15:42004204

Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles:

a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med

12:789799

Durmus NG, Taylor EN, Inci F, Kummer KM, Tarquinio KM, Webster TJ (2012) Fructose-

enhanced reduction of bacterial growth on nanorough surfaces. Int J Nanomedicine 7:537

Erdem A, Metzler D, Cha DK, Huang C (2015) The short-term toxic effects of TiO2 nanoparticles

toward bacteria through viability, cellular respiration, and lipid peroxidation. Environ Sci Pollut

Res 22:1791717924

Esfandiari N, Simchi A, Bagheri R (2014) Size tuning of Ag-decorated TiO2 nanotube arrays for

improved bactericidal capacity of orthopedic implants. J Biomed Mater Res A 102:26252635

Fang B, Jiang Y, Nüsslein K, Rotello VM, Santore MM (2015) Antimicrobial surfaces containing

cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation

affects killing activity and kinetics. Colloids Surf B Biointerfaces 125:255263

Farouk SN, Muhammad A, Aminu Muhammad A (2018) Application of nanomaterials as antimi-

crobial agents: a review. Arch Nano Open Access J 1:3. https://doi.org/10.32474/ANOAJ.2018.

01.000114

Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium

dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:

18471868

Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Nanoparticle approaches against

bacterial infections. Wires Nanomed Nanobi 6:532547

Ghosh S et al (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and

evaluation of its synergistic potential in combination with antimicrobial agents. Int J

Nanomedicine 7:483

Guisbiers G et al (2016) Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized

by pulsed laser ablation in deionized water. Int J Nanomedicine 11:3731

Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biolm

activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale

Res Lett 9:373

Hajipour MJ et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499511

Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211

Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la

Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Strepto-

coccus mutans growth and formation of biolm. Int J Nanomedicine 7:2109

Hsueh P-R (2010) New Delhi metallo-β-lactamase-1 (NDM-1): an emerging threat among

Enterobacteriaceae. J Formos Med Assoc 109:685687

Huh AJ, Kwon YJ (2011)Nanoantibiotics: a new paradigm for treating infectious diseases using

nanomaterials in the antibiotics resistant era. J Control Release 156:128145

174

A. Parmar and S. Sharma